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Synopsis

CEST MR is am unique molecular imaging approach to reveal the exchangeable proton information related to physiology amnd
pathology. However, long scamming time has hindered its translation into climics. While deep-learning based super-resolutiom
methods have been explored to reduce scammimg time im conventional MRI, adaptation of these methods to CEST MRI has beem
limited due to lack of large public CEST datasets. Therefore, this study proposes two transfer learming based super-resolutiom
methods, Single-Offset UNet and Multi-Offset UNet, for acceleratimg CEST MRI acquisition by wsing pulblic MRI databases for
pretraiming and a very smalll CEST dataset for traiimimg.

INTRODUCTION

Rapid development in precision medicine has led to increasing demand for clinical imaging modalities that provide molecular and physiological
information, in addition to anatomical features'2. Chemical Exchange Saturation Transfer (CEST) MRI, with its molecular imaging capabilities,
shows promising applications in early disease diagnosis and guided treatment3#. However, long scanning time for CEST MR is a constraint in its
clinical applications®, and therefore, requires a compromise between scanning time and image quality®. Deep-Learning-based Super-Resolution
(DL-SR) methods have been explored in conventional MRI for reconstructing high-resolution images from low-resolution acquisitions, which
leads to a shorter acquisition time®. The lack of large public CEST databases for DL-SR model development poses an obstacle in adapting these
methods to CEST MRI. Hence, this study aims to tackle this issue by proposing two DL-SR methods, Single-Offset UNet (SO-UNet) and Multi-
Offset UNet (MO-UNet), for accelerating CEST MRI acquisition using large public MRI datasets for pretraining, facilitating the training of the
neural networks with very small CEST datasets.

METHODS

Data Preparatiomn:

For pretraining, human brain MRI images from TCIA database LGG-1p19qDeletion study’-? were selected and resized to 96x96 matrices using
Lanczos downsampling to prevent scale variance'® between pretraining and training dataset. For each high-resolution image, the
corresponding low-resolution MRI image was generated by downsampling of the K-space, followed by inverse Fourier transformation'' (Figure
1).

For training, 43 CEST MRI datasets of mouse brain (C57/BL6) were used. The corresponding low-resolution CEST MRI images were generated by
the downsampling method indicated in Figure 1.

Model:
Two modified iterations of U-Net'?, referred to as SO-UNet and MO-UNet, were developed for reconstructing high-resolution CEST images
(96x96) from low-resolution CEST images (48x48) (Figure 2).

Model Developmemnt:

Both pretraining and training data were randomly split into 80% for training (13888 for pretrain and 3163 for train datasets) and 20% for
validation (3472 for pretrain and 791 for train datasets). Due to the small training dataset size, the mouse CEST images were augmented to
increase variability in the dataset.

Both models were trained on the pretraining data for 1000 epochs to initialize the weights of the models, following which, were trained on
training data for 1500 epochs to fine-tune the weights.

Both SO-UNet and MO-UNet were optimized on a hybrid loss function composed of L1 loss, multi-scale similarity index measure (MS-SSIM)
loss'3 and edge loss™*

Loss"d — o . Loss™* ™™ 1 3. Loss*¥ + (1 — a — fB) - Loss™

where a = 0.7, 8 =0.2.

Performance Evaluatiom:

To evaluate the performance of the model, CEST MRI acquisition of 2 brain tumour mice (NOD-SCID), that were not part of the training process,
were used. The corresponding low-resolution CEST images were generated using the same method (Figure 1).

Both MO-UNet and SO-UNet were evaluated based on two criteria: performances in reconstructing spatial features and reconstructing
Z-spectrum. To quantify the performance in reconstructing spatial features, Peak Signal-to-Noise ratio (PSNR)'> and MS-SSIM'>16 were
calculated. PSNR measures the pixel-level similarity while MS-SSIM measures the structural similarity between two images.

To evaluate the performance in reconstructing the Z-spectrum, the Mean Absolute Error (MAE) of the Z-spectra from the tumour and its
contralateral side of the high-resolution CEST dataset were compared with the same region of interests (ROIs) in low-resolution, SO-UNet, and
MO-UNet CEST datasets.

RESULTS AND DISCUSSION

From Figure 3, it is evident that both SO-UNet and MO-UNet performed well in reconstructing high-frequency features, such as the region
indicated by arrow, that were not captured in the low-resolution images. Results in Table 1 show that both models improved the spatial
resolution, reflected by the higher PSNR and MS-SSIM of both models’ outputs compared with low-resolution images. Between the two models,
the SO-UNet marginally outperformed the MO-UNet on both metrics. A possible reason could be that both models were not trained to their
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optimal performance and hence further investigation is required.

When reconstructing the Z-spectra (Table 2), it is evident that both models performed well, indicated by the low MAE which is insignificant to
cause deviation in the Z-spectrum. Therefore, the reconstructed Z-spectra retains the molecular information present in high-resolution
Z-spectra. Notably, it can be observed that the Z-spectra from low-resolution datasets also have a low MAE. This can be attributed to the fact
that the central window (48x48) used in the downsampling method to generate the low-resolution images preserved most of the pixel
information that is used to construct the Z-spectrum. However, a smaller central window, such as 32x32, used in the downsampling method
might lead to larger pixel information loss, causing deviation in Z-spectrum, which needs to be further investigated.

CONCLUSION

In this study, we proposed the use of two DL-SR methods for reconstructing high-resolution CEST images from low-resolution acquisitions, and
thereby, shortening the scanning time. We also illustrated that the DL-SR models can achieve promising results on a small CEST MRI dataset by
taking advantage of pretraining on public MRI databases. Further investigations are underway to evaluate its ability to reconstruct high-
resolution images from smaller image acquisition, such as 32x32. Current results indicate that deep-learning-based SO-UNet and MO-UNet
show promise in shortening CEST MRI scanning time without compromise in spatial and spectral quality, which facilitates the clinical translation
of CEST MRI.

Acknowledgements

This work was supported by Research Grants Council: 11102218, PDFS2122-1S01; City University of Hong Kong: 7005210, 7005433, 9680247,
9667198 and 9609307; National Natural Science Foundation of China: 81871409.

References

1. Ghasemi M, Nabipour |, Omrani A, Alipour Z, Assadi M. Precision medicine and molecular imaging: new targeted approaches toward cancer
therapeutic and diagnosis. Am J Nucl Med Mol Imaging 2016;6(6):310-327.

2. Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, Rakow-Penner R, Patel MJ, Subramaniam RM, Ganeshan D. Role of Imaging in
the Era of Precision Medicine. Acad Radiol 2017;24(5):639-649.

3. Jones KM, Pollard AC, Pagel MD. Clinical applications of chemical exchange saturation transfer (CEST) MRI. ] Magn Reson Imaging
2018;47(1):11-27.

4. van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med 2011;65(4):927-948.

5. Villano D, Romdhane F, Irrera P, Consolino L, Anemone A, Zaiss M, Dastru W, Longo DL. A fast multislice sequence for 3D MRI-CEST pH
imaging. Magn Reson Med 2021;85(3):1335-1349.

6. Plenge E, Poot DH, Bernsen M, Kotek G, Houston G, Wielopolski P, van der Weerd L, Niessen W), Meijering E. Super-resolution methods in
MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn Reson Med 2012;68(6):1983-1993.

7. Erickson B, Akkus Z, Sedlar J, Kofiatis P. Data from LGG-1p19gDeletion. The Cancer Imaging Archive 2017;76.

8. Akkus Z, Ali |, Sedlar J, Agrawal JP, Parney IF, Giannini C, Erickson BJ. Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas
from MR Images Using Machine Intelligence. ] Digit Imaging 2017;30(4):469-476.

9. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M. The Cancer Imaging Archive (TCIA):
maintaining and operating a public information repository. Journal of digital imaging 2013;26(6):1045-1057.

10. Goodfellow |, Bengio Y, Courville A. Deep learning: MIT press; 2016.

11. Masutani EM, Bahrami N, Hsiao A. Deep Learning Single-Frame and Multiframe Super-Resolution for Cardiac MRI. Radiology
2020;295(3):552-561.

12. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. 2015. Springer. p 234-241.

13. Zhao H, Gallo O, Frosio |, Kautz J. Loss functions for neural networks for image processing. arXiv preprint arXiv:151108861 2015.

14. Seif G, Androutsos D. Edge-based loss function for single image super-resolution. 2018. IEEE. p 1468-1472.

15. Wang Z, Chen J, Hoi SCH. Deep Learning for Image Super-Resolution: A Survey. IEEE Trans Pattern Anal Mach Intell 2021;43(10):3365-3387.

16. Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. 2003. leee. p 1398-1402.

Figures
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Figure 1: lllustration of the downsampling method used to generate low-resolution images. The high-resolution CEST image (96x96) is
transformed into K-space by Fast Fourier Transformation (FFT). The central window (48x48 for 2-time downsampling) is cropped, zero-padded
and inverse FFT (iFFT) to form the low-resolution image (96x96).
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Figure 2: Schematic representations of (A) MO-UNet and (B) SO-UNet. During pretraining of MO-UNet, each low-resolution human brain image
is concatenated thrice - forming an input volume - and used as input. During training, each low-resolution (48x48 k-space zero-padded to
96x96 k-space and transformed to image space) offset image (w') along with its neighbouring offset images (w'"! and w'*!) are used as inputs.
For SO-UNet, during pretraining, a single low-resolution human image is used as input and, during training, a single low-resolution offset image
(w') is used as input.

SO-UNet MO-UNet

3ppm

Figure 3: Comparison of the high-resolution (Column 1) CEST images with low-resolution (Column 2), SO-UNet reconstructed (Column 3) and
MO-UNet reconstructed (Column 4) CEST images. The reconstructed images, from SO-UNet and MO-UNet, show the visible reconstruction of
high-frequency features that are lost in low-resolution CEST MRI acquisition.

Figure 4: Comparison of Z-spectra from tumour and its contralateral site. (A) Mouse brain MRI with tumour region of interest (ROI, red) and its
contralateral ROI (blue) from which Z-spectra were extracted. (B & C) Comparison of Z-spectra between high-resolution and low-resolution CEST
test dataset with difference plot. (D & E) Comparison of Z-spectra between high-resolution and SO-UNet reconstructed CEST test dataset with
difference plot. (F & G) Comparison of Z-spectra between high-resolution and MO-UNet reconstructed CEST test dataset with difference plot.

Table 1: Comparison of PSNR and MS-SSIM

Metrics Low-Resolution SO-UNet MO-UNet
PSNR 38.97 4041 4025
MS-SSIM 0.9958 0.9967 0.9966

Table 2: Mean Absolute Error in Z-spectrum reconstruction

Mean Absolute Error Low-Resolution SO-UNet MO-UNet
Tumour 0.0032 0.0031 0.0034
Contralateral 0.0010 0.0018 0.0027

Table 1: Comparison of PSNR and MS-SSIM of low-resolution, SO-UNet reconstructed and MO-UNet reconstructed test CEST dataset calculated
with respect to the original, high-resolution dataset. Table 2: MAE of Z-spectra obtained from tumour and its contralateral region for low-
resolution, SO-UNet reconstructed and MO-UNet reconstructed test CEST dataset calculated with respect to the Z-spectra from the same ROIs
in original, high-resolution CEST dataset.
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